錫膏使用常見問題及分析
焊錫膏的回流焊接是用在SMT裝配工藝中的主要板級互連方法,這種焊接方法把所需要的焊接性極好地結(jié)合在一起,這些特性包括易于加工、對各種SMT設(shè)計(jì)有廣泛的兼容性,具有高的焊接可靠性以及成本低等;然而,在回流焊接被用作為*重要的SMT元件級和板級互連方法的時候,它也受到要求進(jìn)一步改進(jìn)焊接性的挑戰(zhàn),事實(shí)上,回流焊技術(shù)能否經(jīng)受住這一挑戰(zhàn)將決定焊膏能否繼續(xù)作為首要的SMT焊接材料,尤其是在超細(xì)微間距技術(shù)不斷取得進(jìn)展的情況之下。下面我們將探討影響改進(jìn)回流焊接性能的幾個主要問題,為發(fā)激發(fā)工業(yè)界研究出解決這一課的新方法,我們分別對每個問題簡要介紹如下:底面元件的固定
雙面回流焊接已采用多年,在此,先對**面進(jìn)行印刷布布線,安裝元件和軟熔,然后翻過來對電路板的另一面進(jìn)行加工處理,為了更加節(jié)省起見,某此工藝省去了對**面的軟熔,而是同時軟熔頂面和底面,典型的例子是電路板底面上僅裝有小的元件,如芯片電容器和芯片電阻器,出于印刷電路板(PCB)的設(shè)計(jì)越來越復(fù)雜,裝在底面的元件也越來越大,結(jié)果軟熔時元件脫落成為一個重要的問題。顯然,元件脫落現(xiàn)象是由于軟熔時熔化了的焊料對元件垂直固定力不足,而垂直固定力不足可歸因于元件重量增加,元件的可焊性差,焊劑的潤濕性或焊料量不足等,其中,**個因素是*根本的原因。如果在對后面的三個因素加以改進(jìn)后仍有元件脫落現(xiàn)象存在,就必須使用SMT粘結(jié)劑。顯然,使用粘結(jié)劑將會使軟熔時元件自對準(zhǔn)的效果變差。
未焊滿
未焊滿是在相鄰的引線之間形成焊橋。通常,所有能引起焊膏坍落的因素都會導(dǎo)致未焊滿,這些因素包括:1、升溫速度太快;2、焊膏的觸變性能太差或是焊膏的粘度在剪切后恢復(fù)太慢;3、金屬負(fù)荷或固體含量太低;4、粉料粒度頒太廣;5、焊劑表面張力太小。但是,坍落并非必然引起未焊滿,在軟熔時,熔化了的未焊滿焊料在表面張力的推動下有斷開的可能,焊料流失現(xiàn)象將使未焊滿問題變得更加嚴(yán)重。在此情況下,由于焊料流失而聚集在某一區(qū)域的過量的焊料將會使熔融焊料變得過多而不易斷開。
除了引起焊膏坍落的因素外,下面的因素也引起未滿焊的常見原因:1、相對于焊點(diǎn)之間的空間而言,焊膏熔敷太多;2,加熱溫度過高;3,焊膏受熱速度比電路板更快;4焊劑潤濕速度太快;5焊劑蒸氣壓太大;6,焊劑的溶劑成分太高;7,焊劑樹脂軟化點(diǎn)太低。
繼續(xù)潤濕
焊料膜的斷續(xù)潤濕是指出現(xiàn)在光滑的表面上(1.4.5),這是由于焊料表面能粘附在大多數(shù)的固體金屬表面上,并且在融化了的焊料覆蓋層下隱藏著某些未被潤濕的點(diǎn),因此,在*初用熔化的焊料來覆蓋表面時,會有繼續(xù)潤濕現(xiàn)象出現(xiàn)。亞穩(wěn)態(tài)的熔融焊料覆蓋層在*小表面能驅(qū)動力的作用下會發(fā)生收縮,不一會兒之后就聚集成分離的小球和脊?fàn)疃d起物。繼續(xù)潤濕也能由部件與熔化的焊料相接觸時放出的氣體而引起。由于有機(jī)物的熱分解或無機(jī)物的水合作用而釋放的水分都會產(chǎn)生氣體。水蒸氣是這些有關(guān)氣體的*常見的成份,在焊接溫度下,水蒸氣具極強(qiáng)的氧化作用,能夠氧化熔融焊料膜的表面或某些表面下的界面(典型的例子是在熔焊料交界上的金屬氧化物表面)。常見的情況是較高的焊接溫度和較長的停留時間會導(dǎo)致更為嚴(yán)重的斷續(xù)潤濕現(xiàn)象,尤其是在基體金屬之中,反應(yīng)速度的增加會導(dǎo)致更加猛烈的氣體釋放。與此同時,較長的停留時間也會延長氣體釋放的時間。以上兩方面都會增加釋放氣體量,消除繼續(xù)潤濕現(xiàn)象的方法是:1,降低焊接溫度;2,縮短軟熔的停留時間;3,采用流動的惰性氣氛;4,降低污染程度。
低殘留物
對不用清理的軟熔工藝而言,為了獲得裝飾上或功能上的效果,常常要求低殘留物,對功能要求方面的例子包括“通過在電路中測試的焊劑殘留物來探查測試堆焊層以及在插入接頭與軟熔焊點(diǎn)附近的通孔之間實(shí)行電接觸”,較多的焊劑殘?jiān)?dǎo)致在要實(shí)行電接觸的金屬表層上有過多的殘留物覆蓋,這會妨礙電連接的建立,在電路密度日益增加的情況下,這個問題越發(fā)受到人們的關(guān)注。
顯然,不用清理的低殘留物焊膏是滿足這個要求的一個理想的解決辦法。然而,與此相關(guān)的軟熔必要條件卻使這個問題變得更加復(fù)雜了。為了預(yù)測在不同級別的惰性軟熔氣氛中低殘留物焊膏的焊接性能,提出一個半經(jīng)驗(yàn)的模型,這個模型預(yù)示,隨著氧含量的降低,焊接性能會迅速地改進(jìn),然后逐漸趨于平穩(wěn),實(shí)驗(yàn)結(jié)果表明,隨著氧濃度的降低,焊接強(qiáng)度和焊膏的潤濕能力會有所增加,此外,焊接強(qiáng)度也隨焊劑中固體含量的增加而增加。實(shí)驗(yàn)數(shù)據(jù)所提出的模型是可比較的,并強(qiáng)有力地證明了模型是有效的,能夠用以預(yù)測焊膏與材料的焊接性能,因此,可以斷言,為了在焊接工藝中成功地采用不用清理的低殘留物焊料,應(yīng)當(dāng)使用惰性的軟熔氣氛。
間隙
間隙是指在元件引線與電路板焊點(diǎn)之間沒有形成焊接點(diǎn)。一般來說,這可歸于以下四方面的原因:1,焊料熔敷不足;2,引線共面性差;3,潤濕不夠;4,焊料損耗這是由預(yù)鍍錫的印刷電路板上焊膏坍落,引線的芯吸作用(2.3.4)或焊點(diǎn)附近的通孔引起的,引線共面性問題是新的重量較輕的12密耳(um)間距的四芯線扁平集成電路(QFPQuadflatpacks)的一個特別令人關(guān)注的問題,為了解決這個問題,提出了在裝配之前用焊料來預(yù)涂覆焊點(diǎn)的方法(9),此方法是擴(kuò)大局部焊點(diǎn)的尺寸并沿著鼓起的焊料預(yù)覆蓋區(qū)形成一個可控制的局部焊接區(qū),并由此來抵償引線共面性的變化和防止間隙,引線的苡吸作用可以通過減慢加熱速度以及讓底面比頂面受熱更多來加以解決,此外,使用潤濕速度較慢的焊劑,較高的活化溫度或能延緩熔化的焊膏(如混有錫粉和鉛粉的焊膏)也能*大限度地減少芯吸作用,在用錫鉛覆蓋層光整電路板之前,用焊料掩膜來覆蓋連接路徑也能防止由附近的通孔引起的芯吸作用。
焊料成球
焊料成球是*常見的也是*棘手的問題,這指軟熔工序中焊料在離主焊料熔池不遠(yuǎn)的地方凝固成大小不等的球粒;大多數(shù)的情況下,這些球粒是由焊膏中的焊料粉組成的,焊料成球使人心耽心會有電路短路、漏電和焊接點(diǎn)上焊料不足等問題發(fā)生,隨著細(xì)微間距技術(shù)和不用清理的焊接方法的進(jìn)展,人們越來越迫切地要求使用無焊料成球現(xiàn)象的SMT工藝。
引起焊料成球(1,2,4,10)的原因包括:1,由于電路印制工藝不當(dāng)而造成的油漬;2,焊膏過多地暴露在具有氧化作用的環(huán)境中;3,焊膏過多地暴露在潮濕環(huán)境中;4,不適當(dāng)?shù)募訜岱椒ǎ?,加熱速度太快;6,預(yù)熱斷面太長;7,焊料掩膜和焊膏間的相互作用;8,焊劑活性不夠;9,焊粉氧化物或污染過多;10,塵粒太多;11,在特定的軟熔處理中,焊劑里混入了不適當(dāng)?shù)膿]發(fā)物;12,由于焊膏配方不當(dāng)而引起的焊料坍落;13、焊膏使用前沒有充分恢復(fù)至室溫就打開包裝使用;14、印刷厚度過厚導(dǎo)致“塌落”形成錫球;15、焊膏中金屬含量偏低。
焊料結(jié)珠
焊料結(jié)珠是在使用焊膏和SMT工藝時焊料成球的一個特殊現(xiàn)象,簡單地說,焊珠是指那些非常大的焊球,其上粘帶有(或沒有)細(xì)小的焊料球(11)。它們形在在具有極低的托腳元件如芯片電容器的周圍。焊料結(jié)珠是由焊劑排氣而引起,在預(yù)熱階段這種排氣作用超過焊膏的內(nèi)聚力,排氣促進(jìn)了焊膏在低間隙元件下形成孤立的團(tuán)粒,在軟熔時,熔化了的孤立焊膏再次從元件下冒出來,并聚結(jié)起。
焊接結(jié)珠的原因包括:1,印刷電路的厚度太高;2,焊點(diǎn)和元件重疊太多;3,在元件下涂了過多錫膏;4,安置元件的壓力太大;5,預(yù)熱時溫度上升速度太快;6,預(yù)熱溫度太高;7,在濕氣從元件和阻焊料中釋放出來;8,焊劑的活性太高;9,所用的粉料太細(xì);10,金屬負(fù)荷太低;11,焊膏坍落太多;12,焊粉氧化物太多;13,溶劑蒸氣壓不足。消除焊料的*簡易的方法也許是改變模版孔隙形狀,以使在低托腳元件和焊點(diǎn)之間夾有較少的焊膏。焊接角焊接抬起
焊接角縫抬起指在波峰焊接后引線和焊接角焊縫從具有細(xì)微電路間距的四芯線組扁平集成電路(QFP)的焊點(diǎn)上完全抬起來,特別是在元件棱角附近的地方,一個可能的原因是在波峰焊前抽樣檢測時加在引線上的機(jī)械應(yīng)力,或者是在處理電路板時掃受到的機(jī)械損壞(12)。在波峰焊前抽樣檢測時,用一個鑷子劃過QFP元件的引線,以確定是否所有的引線在軟溶烘烤時都焊上了;其結(jié)果是產(chǎn)生了沒有對準(zhǔn)的焊趾,這可在從上向下觀察看到,如果板的下面加熱在焊接區(qū)/角焊縫的間界面上引起了部分二次軟熔,那么,從電路板抬起引線和角焊縫能夠減輕內(nèi)在的應(yīng)力,防止這個問題的一個辦法是在波峰焊之后(而不是在波峰焊之前)進(jìn)行抽樣檢查。
豎碑(Tombstoning)
豎碑(Tombstoning)是指無引線元件(如片式電容器或電阻)的一端離開了襯底,甚至整個元件都支在它的一端上。
Tombstoning也稱為Manhattan效應(yīng)、Drawbridging效應(yīng)或Stonehenge效應(yīng),它是由軟熔元件兩端不均勻潤滑而引起的;因此,熔融焊料的不夠均衡的表面張力拉力就施加在元件的兩端上,隨著SMT小型化的進(jìn)展,電子元件對這個問題也變得越來越敏感。
此種狀況形成的原因:1、加熱不均勻;2、元件問題:外形差異、重量太輕、可焊性差異;3、基板材料導(dǎo)熱性差,基板的厚度均勻性差;4、焊盤的熱容量差異較大,焊盤的可焊性差異較大;5、錫膏中助焊劑的均勻性差或活性差,兩個焊盤上的錫膏厚度差異較大,錫膏太厚,印刷精度差,錯位嚴(yán)重;6、預(yù)熱溫度太低;7、帖裝精度差,元件偏移嚴(yán)重。
Ball Grid Array(BGA)成球**
BGA成球常遇到諸如未焊滿,焊球不對準(zhǔn),焊球漏失以及焊料量不足等缺陷,這通常是由于軟熔時對球體的固定力不足或自定力不足而引起。固定力不足可能是由低粘稠,高阻擋厚度或高放氣速度造成的;而自定力不足一般由焊劑活性較弱或焊料量過低而引起。
BGA成球作用可通過單獨(dú)使用焊膏或者將焊料球與焊膏以及焊料球與焊劑一起使用來實(shí)現(xiàn);正確的可行方法是將整體預(yù)成形與焊劑或焊膏一起使用。*通用的方法看來是將焊料球與焊膏一起使用,利用錫62或63球焊的成球工藝產(chǎn)生了極好的效果。在使用焊劑來進(jìn)行錫62或錫63球焊的情況下,缺陷率隨著焊劑粘度,溶劑的揮發(fā)性和間距尺寸的下降而增加,同時也隨著焊劑的熔敷厚度,焊劑的活性以及焊點(diǎn)直徑的增加而增加,在用焊膏來進(jìn)行高溫熔化的球焊系統(tǒng)中,沒有觀察到有焊球漏失現(xiàn)象出現(xiàn),并且其對準(zhǔn)確度隨焊膏熔敷厚度與溶劑揮發(fā)性,焊劑的活性,焊點(diǎn)的尺寸與可焊性以及金屬負(fù)載的增加而增加,在使用錫63焊膏時,焊膏的粘度,間距與軟熔截面對高熔化溫度下的成球率幾乎沒有影響。在要求采用常規(guī)的印刷釋放工藝的情況下,易于釋放的焊膏對焊膏的單獨(dú)成球是至關(guān)重要的。整體預(yù)成形的成球工藝也是很的發(fā)展前途的。減少焊料鏈接的厚度與寬度對提高成球的成功率也是相當(dāng)重要的。
形成孔隙
形成孔隙通常是一個與焊接接頭的相關(guān)的問題。尤其是應(yīng)用SMT技術(shù)來軟熔焊膏的時候,在采用無引線陶瓷芯片的情況下,絕大部分的大孔隙(>0.0005英寸/0.01毫米)是處于LCCC焊點(diǎn)和印刷電路板焊點(diǎn)之間,與此同時,在LCCC城堡狀物附近的角焊縫中,僅有很少量的小孔隙,孔隙的存在會影響焊接接頭的機(jī)械性能,并會損害接頭的強(qiáng)度,延展性和疲勞壽命,這是因?yàn)榭紫兜纳L會聚結(jié)成可延伸的裂紋并導(dǎo)致疲勞,孔隙也會使焊料的應(yīng)力和協(xié)變增加,這也是引起損壞的原因。此外,焊料在凝固時會發(fā)生收縮,焊接電鍍通孔時的分層排氣以及夾帶焊劑等也是造成孔隙的原因。
在焊接過程中,形成孔隙的械制是比較復(fù)雜的,一般而言,孔隙是由軟熔時夾層狀結(jié)構(gòu)中的焊料中夾帶的焊劑排氣而造成的(2,13)孔隙的形成主要由金屬化區(qū)的可焊性決定,并隨著焊劑活性的降低,粉末的金屬負(fù)荷的增加以及引線接頭下的覆蓋區(qū)的增加而變化,減少焊料顆粒的尺寸僅能稍許增加孔隙。此外,孔隙的形成也與焊料粉的聚結(jié)和消除固定金屬氧化物之間的時間分配有關(guān)。焊膏聚結(jié)越早,形成的孔隙也越多。通常,大孔隙的比例隨總孔隙量的增加而增加,與總孔隙量的分析結(jié)果所示的情況相比,那些有啟發(fā)性的引起孔隙形成因素將對焊接接頭的可靠性產(chǎn)生更大的影響,控制孔隙形成的方法包括:1,改進(jìn)元件/衫底的可焊性;2,采用具有較高助焊活性的焊劑;3,減少焊料粉狀氧化物;4,采用惰性加熱氛,5,減緩軟熔前的預(yù)熱過程與上述情況相比,在BGA裝配中孔隙的形成遵照一個略有不同的模式(14)一般說來,在采用錫63焊料塊的BGA裝配中孔隙主要是在板級裝配階段生成的,在預(yù)鍍錫的印刷電路板上,BGA接頭的孔隙量隨溶劑的揮發(fā)性,金屬成分和軟熔溫度的升高而增加,同時也隨粉粒尺寸的減少而增加;這可由決定焊劑排出速度的粘度來加以解釋,按照這個模型,在軟熔溫度下有較高粘度的助焊劑介質(zhì)會妨礙焊劑從熔融焊料中排出,因此,增加夾帶焊劑的數(shù)量會增大放氣的可能性,從而導(dǎo)致在BGA裝配中有較大的孔隙度,在不考慮固定的金屬化區(qū)的可焊性的情況下,焊劑的活性和軟熔氣氛對孔隙生成的影響似乎可以忽略不計(jì),大孔隙的比例會隨總孔隙量的增加而增加,這就表明,與總孔隙量分析結(jié)果所示的情況相比,在BGA中引起孔隙生成的因素對焊接接頭的可靠性有更大的影響,這一點(diǎn)與在SMT工藝中空隙生成的情況相似。
總結(jié)
焊膏的回流焊接是SMT裝配工藝中的主要的板極互連方法,影響回流焊接的主要問題包括:底面元件的固定、未焊滿、斷續(xù)潤濕、低殘留物、間隙、焊料成球、焊料結(jié)珠、焊接角焊縫抬起、TombstoningBGA成球**、形成孔隙等,問題還不**于此,在本文中未提及的問題還有浸析作用,金屬間化物,不潤濕,歪扭,無鉛焊接等,只有解決了這些問題,回流焊接作為一個重要的SMT裝配方法,才能在超細(xì)微間距的時代繼續(xù)成功地保留下去。